Multiply Warped Product on Quasi-einstein Manifold with a Semi-symmetric Non-metric Connection
نویسنده
چکیده
In this paper, we have studied warped products and multiply warped product on quasi-Einstein manifold with semi-symmetric nonmetric connection. Then we have applied our results to generalized Robertson-Walker space times with a semi-symmetric non-metric connection.
منابع مشابه
Warped product and quasi-Einstein metrics
Warped products provide a rich class of physically significant geometric objects. Warped product construction is an important method to produce a new metric with a base manifold and a fibre. We construct compact base manifolds with a positive scalar curvature which do not admit any non-trivial quasi-Einstein warped product, and non compact complete base manifolds which do not admit any non-triv...
متن کاملSome vector fields on a riemannian manifold with semi-symmetric metric connection
In the first part of this paper, some theorems are given for a Riemannian manifold with semi-symmetric metric connection. In the second part of it, some special vector fields, for example, torse-forming vector fields, recurrent vector fields and concurrent vector fields are examined in this manifold. We obtain some properties of this manifold having the vectors mentioned above.
متن کاملInequalities for Submanifolds of a Riemannian Manifold of Nearly Quasi-constant Curvature with a Semi-symmetric Non-metric Connection
By using two new algebraic lemmas we obtain Chen’s inequalities for submanifolds of a Riemannian manifold of nearly quasi-constant curvature endowed with a semi-symmetric non-metric connection. Moreover, we correct a result of C. Özgür and A. Mihai’s paper (Chen inequalities for submanifolds of real space forms with a semi-symmetric non-metric connection, Canad. Math. Bull. 55 (2012), 611–622).
متن کاملOn (k, μ)-Paracontact Metric Manifolds
The object of this paper is to study (k, μ)-paracontact metric manifolds with qusi-conformal curvature tensor. It has been shown that, h-quasi conformally semi-symmetric and φ-quasi-conformally semi-symmetric (k, μ)-paracontact metric manifold with k 6= −1 cannot be an η-Einstein manifold.
متن کاملOn some properties of submanifolds of a Riemannian manifold endowed with a semi-symmetric non-metric connection
We study submanifolds of a Riemannian manifold with a semi-symmetric non-metric connection. We prove that the induced connection is also a semi-symmetric non-metric connection. We consider the total geodesicness, total umbilicity and the minimality of a submanifold of a Riemannian manifold with the semi-symmetric non-metric connection. We have obtained the Gauss, Codazzi and Ricci equations wit...
متن کامل